Steroid-induced cardiac contractility requires exogenous glucose, glycolysis and the sarcoplasmic reticulum in rainbow trout.
نویسندگان
چکیده
Recent data from our laboratory suggest that sex steroids promote contractile function in cardiac muscle of rainbow trout (Oncorhynchus mykiss Walbaum), and there are sex differences in hormone signaling and cardiac function. The current study investigated whether steroid-induced inotropism in electrically paced (0.5 Hz, 14 degrees C) ventricle strips at 90% Lmax (1) has a metabolic requirement for exogenous glucose and (2) is associated with enhanced intracellular Ca2+ storage and release from the sarcoplasmic reticulum (SR). We also explored whether sex differences exist in extracellular Ca2+ (Ca2+o) or cardiac sensitivity to Ca2+o. In the absence or at low concentrations (1 or 2 mmol l-)) of exogenous glucose, resting tension and relaxation time were increased selectively in cardiac tissue from females. Increasing glucose promoted twitch force in a bell-shaped manner, with 5 mmol l-1 representing the optimal concentration for both sexes. The positive inotropic effects of physiological concentrations of testosterone (T) and 17beta-estradiol (E2) in male and female trout ventricle strips, respectively, developed slowly (10-45 min) and were not apparent in glucose-free medium, in medium containing iodoacetate (IAA), an inhibitor of glycolysis, or medium containing 5 mmol l-) lactate or pyruvate. Male ventricle strips had increased inotropic responses to glucose and T compared with female strips exposed to glucose and E2. Furthermore, sexually maturing males showed a greater inotropic response than immature males or females. Pretreatment with ryanodine (a specific blocker of SR Ca2+ release) also eliminated the inotropic effects of sex steroids and exogenous glucose and reduced the post-rest potentiation of contractile force (a marker of SR Ca2+ storage). By contrast, the inotropic effects of epinephrine (Epi) or elevated Ca2+o were faster (developing within 1-3 min) and were not diminished by the presence or absence of glucose or by pretreatment with IAA or ryanodine. Sex differences were also found in responsiveness to caffeine (males>females) and the relationship between Ca2+ concentration and force development above baseline. The Ca2+50 was lower in female cardiac tissue than males, suggesting greater Ca2+ sensitivity, and although plasma albumin was higher in females, total and ionized plasma Ca2+ did not differ between the sexes. For the first time, our study highlights the importance of extracellular glucose, glycolytic activity and SR Ca2+ storage and release for sex steroid-induced inotropism in the trout ventricle. Conversely, the inotropes Epi and elevated [Ca2+o] do not require the presence or metabolism of exogenous glucose or the SR for signaling their positive effects on contractility. These results also demonstrate novel sex-related differences in cardiac reliance on exogenous glucose, Ca2+ sensitivity and SR function and thus should be considered in future studies.
منابع مشابه
CALL FOR PAPERS Sex and Gender Differences in Cardiovascular Physiology–Back to the Basics Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout
Battiprolu PK, Rodnick KJ. Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout. Am J Physiol Heart Circ Physiol 307: H1401–H1411, 2014. First published September 12, 2014; doi:10.1152/ajpheart.00755.2013.— Cardiac tissue from female rainbow trout demonstrates a sex-specific preference for exogenous glucose and glycolysis, impaired Ca handling, a...
متن کاملDichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout.
Cardiac tissue from female rainbow trout demonstrates a sex-specific preference for exogenous glucose and glycolysis, impaired Ca(2+) handling, and a greater tolerance for hypoxia and reoxygenation than cardiac tissue from male rainbow trout. We tested the hypothesis that dichloroacetate (DCA), an activator of pyruvate dehydrogenase, enhances cardiac energy metabolism and Ca(2+) handling in fem...
متن کاملEffects of temperature, adrenaline and ryanodine on power production in rainbow trout oncorhynchus mykiss ventricular trabeculae
This study is the first to examine the contractility of teleost ventricular muscle in an oscillating muscle preparation. The experiments were designed to test the relative importance of Ca2+ released from the sarcoplasmic reticulum (SR) and Ca2+ influx across the sarcolemma (SL) to cardiac performance in rainbow trout Oncorhynchus mykiss. Adrenaline and ryanodine were used to modulate Ca2+ flux...
متن کاملLimited effects of exogenous glucose during severe hypoxia and a lack of hypoxia-stimulated glucose uptake in isolated rainbow trout cardiac muscle.
We examined whether exogenous glucose affects contractile performance of electrically paced ventricle strips from rainbow trout under conditions known to alter cardiomyocyte performance, ion regulation and energy demands. Physiological levels of d-glucose did not influence twitch force development for aerobic preparations (1) paced at 0.5 or 1.1 Hz, (2) at 15 or 23°C, (3) receiving adrenergic s...
متن کاملThe calcium stored in the sarcoplasmic reticulum acts as a safety mechanism in rainbow trout heart
Cardiomyocyte contraction depends on rapid changes in intracellular Ca(2+). In mammals, Ca(2+) influx as L-type Ca(2+) current (ICa) triggers the release of Ca(2+) from sarcoplasmic reticulum (SR) and Ca(2+)-induced Ca(2+) release (CICR) is critical for excitation-contraction coupling. In fish, the relative contribution of external and internal Ca(2+) is unclear. Here, we characterized the role...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 11 شماره
صفحات -
تاریخ انتشار 2006